Código: HSS-PLN-030

Versión: 1

PLAN DE CONTINGENCIAS ANTE CRECIDAS EN BOCATOMA EL MANZANO

PLAN DE CONTINGENCIAS ANTE CRECIDAS EN BOCATOMA EL MANZANO

STRABAG Spa – Alto Maipo Project
CONTROLLED COPY
(COPIA CONTROLADA)
07 / 05 / 2021

PLAN DE CONTINGENCIAS ANTE CRECIDAS EN BOCATOMA EL MANZANO

CONTENIDO

1.	OBJETIVO	4
2.	ALCANCE	4
3.	EJECUCIÓN DE TRABAJOS PARA PROTEGER LA ZONA DE CRECIDAS	5
4.	CONDICIONES ESTÁNDARES DE SEGURIDAD EN CASO DE EVACUACIÓN	7
5.	ASPECTOS MEDIOAMBIENTALES	8
6	ANEXOS	11

PLAN DE CONTINGENCIAS ANTE CRECIDAS EN BOCATOMA EL MANZANO

CONTROL DE CAMBIOS

Revisión	Modificación
0	Primera edición emitida para información
1	Se da respuesta a las observaciones de la DGA Se da respuestas a las observaciones de PHAM

PLAN DE CONTINGENCIAS ANTE CRECIDAS EN BOCATOMA EL MANZANO

1. OBJETIVO

El objetivo de este documento es describir el plan de contingencia para abordar una eventual crecida del cauce del río Colorado durante la construcción de la nueva bocatoma El Manzano. Las crecidas del río durante las épocas de deshielo pueden afectar el área donde se encontrará emplazada la construcción de la bocatoma, por tanto, con este plan se busca identificar, medir, controlar y mitigar los riesgos asociados a esta condición y tomar acciones de contingencia.

2. ALCANCE

El alcance establecido abarca todas las actividades que tienen que ver con el lugar en donde se encontrará emplazada la nueva futura bocatoma El manzano, también abarca a todo el personal involucrado y los equipos y materiales que tienen relación con la construcción de esta bocatoma. En la foto N°1 y Figura N°1 se encuentra indicada la ubicación de la nueva bocatoma El Manzano y el pretil de contención para desviar el cauce mientras se construye.

Foto N°1

PLAN DE CONTINGENCIAS ANTE CRECIDAS EN BOCATOMA EL MANZANO

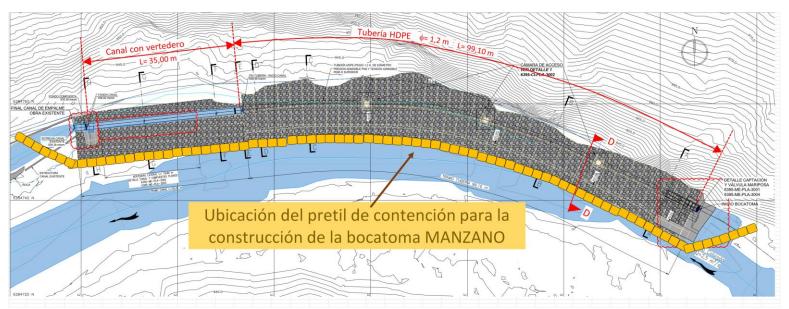


Figura N°1

3. REFERENCIAS

- HSS-PLN-003 Plan General de respuesta a Emergencia
- COM-PLN-001 Plan de Manejo con la Comunidad
- HSS-EST-011 Estándar para trabajos en bordes afluentes
- 6395-ES-MCA-7003-A00 Memoria de cálculo ESTRUCTURAL del Pretil
- 6395-HI-MCA-7001-A00 Memoria de cálculo HIDRÁULICO del Pretil
- 6395-HI-PLA-3009-A00 Plano Pretil el Manzano
- HSS-EST-003 Estándar Protección Excavaciones
- ECW-PCD-019 Procedimiento construcción enrocados
- QEM-PRO-004 Procedimiento de gestión de sustancias peligrosas
- QEM-PR0-002 Procedimiento Gestión de Residuo
- QEM-INS-013 Instructivo de alerta temprana por turbiedad
- QEM-PCD-021 Prevención y contención de derrame
- QEM-PLN-012 Plan de contingencia
- HSS-PCD-031 Procedimiento de prevención y respuesta COVID 19

4. EJECUCIÓN DE TRABAJOS PARA PROTEGER LA ZONA DE CRECIDAS

Durante la etapa de construcción de la bocatoma se deberán hacer excavaciones al costado del cauce del río para ejecutar las obras civiles. Previo al inicio de estas se construirá un pretil conformado con "sandbag" en pila de a dos que contendrán en su interior cemento y arena consolidado. Estas pilas de "sandbag" estarán puestas al costado y a lo largo de la zona de la construcción. El pretil tendrá una altura de 2,5 metros sobre el piso de trabajo cuya función será desviar el agua y además evitar inundación al interior de la zona de trabajo. En anexo N°6.4, N°6.5 y N°6.6 se encuentran las memorias de cálculo estructural, hidráulico y plano de construcción.

PLAN DE CONTINGENCIAS ANTE CRECIDAS EN BOCATOMA EL MANZANO

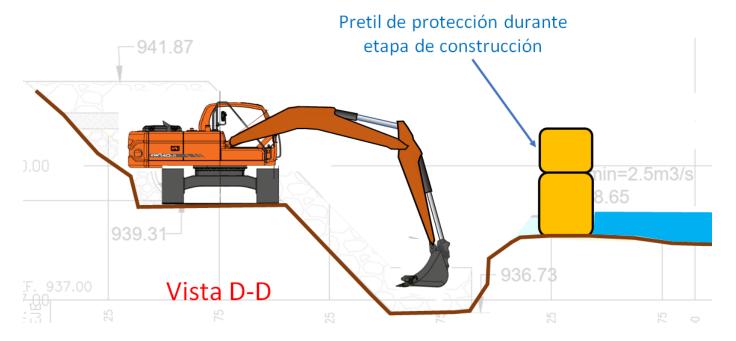


Figura N°2

Actuación ante crecidas del río.

Rango del nivel de agua	Categoría	Acciones
Distancia de más de 40 cm y hasta 80 cm entre el nivel del agua y la clave del pretil	Alerta	Se podrá elevar el nivel del pretil 20 cm más arriba, de tal forma de poder continuar con la construcción. El equipo de trabajo deberá estar atento al nivel del agua en caso de que siga creciendo.
Distancia entre el nivel del agua y la clave del pretil menor a 40cm y mayor a 20cm	Emergencia	Se resguardan personas, maquinaria, equipos e infraestructuras
Distancia entre el nivel del agua y la clave del pretil menor a 20cm.	Evacuación	Se retira el personal del lugar de trabajo y se mantiene observación a distancia

En caso de declararse una alerta, emergencia o evacuación esta se deberá informar mediante radio inalámbrica, dando aviso a canal de prevención de riesgos (#06) y al canal de operaciones (#04).

Cualquier trabajador que presencie una crecida del río podrá dar aviso radial de la alerta, emergencia o evacuación según corresponda.

PLAN DE CONTINGENCIAS ANTE CRECIDAS EN BOCATOMA EL MANZANO

A los trabajadores que se encuentren en el sector se le avisará a viva voz. Para determinar en forma visual los rangos del nivel de agua se instalará una regla hidrométrica en un punto que será evaluado en terreno.

En todo caso, si llegase a ocurrir de algún evento que genere una emergencia, se deberá aplicar lo indicado en el documento "HSS-PLN-003 Plan General de respuesta a emergencias" de STRABAG, ver punto 6, ANEXOS

En lo posible, los trabajos de construcción de la bocatoma el Manzano se ejecutarán en períodos del año en que exista poca probabilidad de crecida del cauce.

Una vez concluidas las excavaciones se ejecutarán los trabajos de obras civiles, rellenos compactados y enrocados consolidados, según lo que indican los planos aprobado para construcción. Para evitar la presencia de agua en las excavaciones se construirá un pretil de desvío del cauce, tal como se mostró anterioridad en la figuras N°2.

Durante la fase de construcción se deberá contar con una estación de emergencia especial, de acuerdo a lo que indica el estándar para trabajos en borde de afluentes HSS-EST-011, la cual debe contar a lo menos con:

- Un picarón salvavidas.
- 30 mts. de cuerda tipo perlón.
- Un chaleco salvavidas.

Durante las fases de emergencia y evacuación no se permitirá la presencia de trabajadores en bordes de los afluentes.

Los operadores de maquinaria deberán mantener la cabina del equipo cerrada en todo momento.

Se debe contar con sistema de comunicación radial entre supervisor y operadores de maquinaria.

En el caso de que se deba llevar a cabo el presente plan de contingencias durante la noche, se debe proporcionar iluminación suficiente.

Ante otras actividades o circunstancias que no están consideradas en el presente plan, se deberá consultar el estándar para trabajos en borde de afluentes HSS-EST-011.

5. CONDICIONES ESTÁNDARES DE SEGURIDAD EN CASO DE EVACUACIÓN

Con el objetivo de mantener expedita la ruta de evacuación y la zona de trabajo al momento de una crecida, se tomarán las siguientes medidas de seguridad en la zona:

 La ruta de acceso a la zona de construcción deberá estar siempre libre de obstáculos.

PLAN DE CONTINGENCIAS ANTE CRECIDAS EN BOCATOMA EL MANZANO

- Cuando no se estén usando los vehículos y equipos, deberán permanecer estacionados en posición de salida.
- Permanentemente, deberá existir mantenimiento en la carpeta de rodado de la ruta de acceso, se rellenarán los sectores en que falte material y se emparejará la superficie.
- La señalética del camino deberá estar en buen estado de mantenimiento, letreros limpios y a la vista del chofer u operador del equipo que circula por la ruta.
- Deberá haber mantenimiento permanente del pretil de protección. El supervisor a cargo deberá inspeccionar en forma diaria el estado del pretil, especialmente donde hace contacto con el agua.
- La parte superior del pretil deberá tener un ancho suficiente para que pueda acceder un equipo para su mantención y poder rellenar con material algún sector socavado.
- Durante la noche y en los horarios donde no se trabaje, los equipos deberán quedar aparcados fuera del área de influencia de la crecida del agua.
- Estará estrictamente prohibido el ingreso al lugar de construcción del camino y de la bocatoma de personas que estén haciendo actividades turísticas y de recreación. Se instalarán señaléticas de restricción NO PASAR y en caso sea necesario, podrá estar un guardia custodiando el lugar.

6. ASPECTOS MEDIOAMBIENTALES

Aspecto ambiental	Detalle del aspecto	Impacto ambiental	Medio impactado	Medidas de control
Emisiones atmosféricas	Gases de combustión (NO2, CO)	Alteración de la calidad	Aire	La maquinaría y/o vehículos que operen deberán mantenerse en óptimas condiciones de funcionamiento. Programa de mantención preventivo. Los vehículos motorizados deberán cumplir con normas de emisión establecidas.
	Ruidos	Alteración de la Calidad	Aire	Programa de mantención preventivo. Las maquinarías y equipos deberán mantenerse en óptimas condiciones de funcionamiento. Respetar las velocidades establecidas en el proyecto. Respetar los horarios para el tránsito de camiones y ejecución

PLAN DE CONTINGENCIAS ANTE CRECIDAS EN BOCATOMA EL MANZANO

				de las actividades (Plan de gestión de tráfico HSS-PLN-004) El traslado de buses y camiones se regirá de acuerdo a lo establecido en la restricción horaria del Plan de cumplimiento ambiental
	Material Particulado	Alteración de la calidad	Aire	Respetar las veloci dades, establecidas en el proyecto. Humectación de las áreas de trabajo. Procedimiento de Humectación
				(QEM-PCD-008). Plan de humectación de caminos (QEM-PLN-021)
Generación de RISES	Residuos de insumos (envases, herramientas, etc).	Alteración de la calidad	Suelo/ Agua	Mantener las instalaciones limpias y ordenadas. La disposición de los residuos será en contenedores habilitados en terreno y diferenciados, según material. Se deberá contar con las autorizaciones respectivas. Se deberá implementar procedimiento de Gestión de residuos (QEM-PRO-002).
Derrames de sustancias	Fugas de Hidrocarburos y/o aceites de equipos y/o Maquinaria	Alteración de la Calidad	Suelo/ Agua	Se debe disponer en terreno, con EEA (bandejas, material absorbente, contenedores, etc), en este caso se mantendrá material específico para controlar derrames que puedan producirse en medio acuatico. Los residuos deberán ser eliminados, según D.S 148. Aplicar Plan General de respuesta a Emergencias (HSS-PLN-003). En caso de derrames en medio acuático, se deberá actuar según lo indicado en el siguiente procedimiento QEM-

PLAN DE CONTINGENCIAS ANTE CRECIDAS EN BOCATOMA EL MANZANO

				PCD-021 Prevención y contención de derrame y QEM-PLN-012 Plan de contingencia
Modificación de cauce	Intervención de cauce de río	Alteración recurso hídrico	Agua	Realizar los trabajos de acuerdo a lo establecido en los permisos otorgados por la DGA como el permiso de modificación de cauce y permiso de obra mayor Mientras se estén ejecutando los trabajos en el cauce del río, se aplicará instructivo QEM-INS-013 Instructivo para la determinación de turbiedad en aguas crudas
Vialidad	Intervención de camino	Impacto vial	Medio Humano	Respetar las restricciones de horarios establecidas en el Plan de cumplimiento del PHAM Transitar por los caminos autorizados por proyecto. Se deberá mantener en todo momento las señales en su posición correcta, limpias y legibles durante el tiempo de su utilización Cumplir las restricciones de tránsito vehicular para camiones mayores a 4 Ton establecidas mediante ordenanza municipal (D.E N° 130/1997).

Importante tener en cuenta durante los trabajos

La maquinaria que trabaje en proximidad del curso de agua será inspeccionada diariamente para descartar potenciales fugas de hidrocarburos.

En caso de caída descontrolada de suelo al río Colorado, que provoque un enturbiamiento significativo del cauce, el Site Manager o quien lo reemplace, detendrá los trabajo y dará aviso al departamento de Medio Ambiente.

PLAN DE CONTINGENCIAS ANTE CRECIDAS EN BOCATOMA EL MANZANO

7. ANEXOS

Anexo 7.1 6395-ES-MCA-7003-A00 Memoria de cálculo ESTRUCTURAL del Pretil

Anexo 7.2 6395-HI-MCA-7001-A00 Memoria de cálculo HIDRÁULICO del Pretil

Anexo 7.3 6395-HI-PLA-3009-A00 Plano Pretil el Manzano

ALTO MAIPO SpA

ALTO MAIPO HYDROPOWER PROJECT DETAILED DESIGN

MEMORIA DE CÁLCULO ESTRUCTURAL DESVÍO DE CAUCE RÍO COLORADO BOCATOMA MANZANO

REV	PREPARATION PÖYRY		REVIEW	PÖYRY	PÖY	'RY APPI	ROVAL	STRA REV	ABAG IEW	STRA APPRO	
	NAME	SIGN.	NAME	SIGN.	NAME	SIGN.	DATE	NAME	SIGN.	NAME	SIGN.
A00	M. Velásquez.	VEM	G. Bravo	BRG	P. Furrer	FUP	05-05-2021				

AES GENER APPROVAL	NAME	SIGNATURE	DATE	
Modifications:				

El Grupo ÅF de Estocolmo, Suecia y los Grupos Pöyry de Helsinki, Finlandia, han concluido su fusión en una sola entidad en febrero de 2019. El nuevo Grupo AF-Pöyry fue rebautizado como Grupo AFRY. La nueva marca AFRY es una combinación de las letras de ÅF y Pöyry: AF+RY.

CONTENIDO

1.	aer	neralidades	3
	_	Descripción de la Estructura	
		CUMENTOS DE REFERENCIA y Antecedentes	
3.		JETIVO	
		SES DE CALCULO	
	4.1.	Materiales	6
	4.2.	Peso propio	
	4.3.	·	
	4.4.	Cargas sísmicas	
	4.5.		
	4.6.	Presión Hidrostática	
	4.7.	Presión Hidrodinámica	7
	4.8.		
4.8	8.1.	Volcamiento	8
4.8	8.2.	Deslizamiento	8
4.8	8.3.	Flotación	8
5.	VE	RIFICACIÓN DE LA ESTABILIDAD DEL SANdBAG	9
6	CO	NCLUSIÓN	.12

1. GENERALIDADES

El presente informe contiene el diseño para la obra de contención para el desvío del rio colorado. El Proyecto Hidroeléctrico de Alto Maipo (PHAM) se ubicará al sureste de la ciudad de Santiago, en el municipio de San José de Maipo, en la región Metropolitana, específicamente en la cuenca del Alto Maipo.

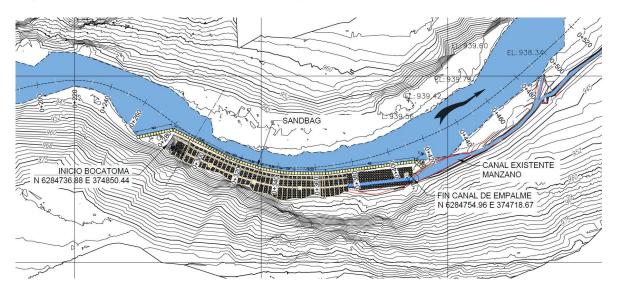


Figura 1-1 Planta general Sandbag.

1.1. Descripción de la Estructura.

Se proyecta como obra de contención (Sandbag) para el desvio del rio colorado. Estos corresponden a arena más cemento los cuales forman bloques de hormigón consolidado. Para controlar los efectos de flotación y estabilidad global de la estructura se proveen 2 bloques los cuales se describen a continuación

Sección 1 BXLXH = 1.5x1.5x1.0 (m) Sección 2 BXLXH = 1.5x1.5x1.5 (m)

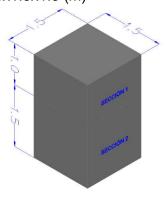


Figura 1-2 Esquema y dimensiones del sandbag.

REV. A00 Page 3 of 12

La estructura del informe es la siguiente:

- Este capítulo entrega una visión general del proyecto y define los alcances y objetivos de este informe.
- En el capítulo 2 se presentan las referencias usadas en este documento.
- El capítulo 3 entrega el objetivo del informe.
- El capítulo 4 muestra las bases de cálculo utilizadas.
- El capítulo 5 se muestran los cálculos de estabilidad de la obra de contención.
- Finalmente, el capítulo 6 contiene las principales conclusiones.

REV. A00 Page 4 of 12

2. DOCUMENTOS DE REFERENCIA Y ANTECEDENTES

Los documentos que sirven de referencia para lo presentado en este documento son:

- [1] Informe de riesgo sísmico AES GENER 600-SI-INF-001.
- [2] Stability Analysis of concrete structure Army Corps of Engineers.
- [3] Manual de carreteras, Volumen 3.
- [4] Nota técnica Análisis Hidráulico Contención Rio Colorado BT Manzano.

REV. A00 Page 5 of 12

3. OBJETIVO

 Verificar la estabilidad global de los Sandbag (Flotación, deslizamiento y volcamiento).

4. BASES DE CALCULO

4.1. Materiales

Las obras de contención corresponden a sandbag los cuales serán rellenados con arena más cemento, por lo que se consideran los siguientes parámetros:

•	γs	=	2.40	(Tonf/m3)	Peso específico del sandbag
•	Ø	=	40	(°)	Angulo de fricción

4.2. Peso propio

Se considera el peso propio de los sandbag considerando el peso especifico indicado en punto 4.1.

4.3. Nivel de agua

Se considera un nivel de agua a una altura de 2.00 m para caudal de 17.50 (m3/s) (4).

4.4. Cargas sísmicas

Dado que es una obra provisoria se utilizará un coeficiente sísmico de 0.12 el cual se considera para obras civiles menores (1).

Table 4-1 Coeficiente Sísmico

Tipo de estructura	Coef. Sísn	nicos
ripo de estructura	Horizontal	Vertical
Canales revestidos con hormigón	0.18	-
Captaciones	0.18	-
Bocatomas	0.18	-
Cámaras de carga	0.18	-
Tuberías de presión	0.20	0.13
Sala de máquinas	0.18	-
Obras civiles menores	0.12	-
Puentes	0.12	-
Empujes de tierra	0.18	0.12

REV. A00 Page 6 of 12

La carga sísmica horizontal inercial de los sandbag se calcula de la siguiente manera:

$$Fsh = Kh * I * P \tag{4.1}$$

Donde:

Kh = Coeficiente sísmico horizontal (0.12).

P = Peso sísmico de la estructura. I = Coeficiente de importancia (1.00).

Fsh = Fuerza sísmica horizontal.

Esta carga actúa en el centro de masa de cada uno de los elementos.

4.5. Subpresión

Se considera la acción de subpresión en la base del sandbag

$$SP = \left(\frac{1}{2}\right) * H * B * \gamma_w \ para \ base \tag{4.2}$$

Donde:

H = Nivel de agua (m).
B = ancho de la base (m).

yw = Peso específico del agua (ton/m3).

4.6. Presión Hidrostática

Se considera la presión hidrostática actuando en los muros del sandbag.

$$Ph = \left(\frac{1}{2}\right) * h^2 * \gamma_w \tag{4.3}$$

Donde:

H = Nivel de agua (m). B = ancho de la base (m).

γw = Peso específico del agua (ton/m3).

4.7. Presión Hidrodinámica

Se considera la acción de presión hidrodinámica formulada por westergaard. (2)

$$Pe = \left(\frac{7}{12}\right) * kh * h^2 * \gamma_w \tag{4.4}$$

Donde:

Pe = Presión hidrodinámica (Tonf/ml)

REV. A00 Page 7 of 12

h = Nivel de agua (Tonf/ml). Kh = Coeficiente sísmico.

4.8. Estabilidad

Para el diseño de estabilidad se debe considerar la verificación de los siguientes casos:

4.8.1. Volcamiento

Se debe verificar que el factor de estabilidad al volcamiento sea superior a lo siguiente:

$$Fs = \frac{Mr}{Mv} \ge 1.50 \ Condición \ normal \tag{4.5}$$

$$Fs = \frac{Mr}{Mv} \ge 1.30 \ Condición \ eventual$$
 (4.6)

Donde:

Mr = Momento resistente (Tonf.m/ml).

Mv = Momento volcante (Tonf.m/ml).

FS = Factor de seguridad.

4.8.2. Deslizamiento

Se debe verificar la seguridad al deslizamiento a partir de lo siguiente:

$$\frac{Fr}{Fd} \ge 1.50 \ (Estado \ Normal) \tag{4.7}$$

$$\frac{Fr}{Fd} \ge 1.30 \ (Estado \ Eventual)$$
 (4.8)

Donde:

Fr = Fuerza resistente (Tonf.m/ml). Fd = Fuerza deslizante (Tonf.m/ml).

4.8.3. Flotación

Para garantizar la seguridad a la no flotación se deberá verificar que:

$$\frac{\Sigma V}{1.2} \ge \sum F \text{ flotantes (normal)} \tag{4.9}$$

Donde:

ΣV: Sumatoria de las fuerzas verticales que se oponen a la flotación.

REV. A00 Page 8 of 12

ΣFlotantes: Resultante vertical de las fuerzas que favorecen la flotación.

5. VERIFICACIÓN DE LA ESTABILIDAD DEL SANDBAG

Datos del cauce para T=5 años						
Q	17.50	(m3/s)				
h	2.00	(m)				
r	0.50	(m)				

Donde:

Q = Caudal del cauce (m3/s).

h = Nivel de agua (m).

r = Revancha (m).

Datos de entrada							
γ	2.40	(Tonf/m3)					
Ø	40.00	(°)					
2/3Ø	26.67	(°)					

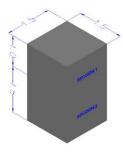
Donde:

γ = Peso específico del sandbag (Tonf/m3).

 \emptyset = Angulo de fricción (°).

Geometria de la sección								
חו	В	L	Н	Α	V			
IB.	(m)	(m)	(m)	(m2)	(m3)			
Sección 1	1.50	1.50	1.00	1.50	2.25			
Sección 2	1.50	1.50	1.50	2.25	3.38			

Donde:


B = Caudal del cauce (m).

L = Nivel de agua (m).

H = Revancha (m).

A = Área transversal (m2).

V = Volumen (m3).

Peso propio de la sección							
ID	A (m2)	W (Tonf/ml)					
Sección 1	1.50	3.60					
Sección 2	2.25	5.40					

REV. A00 Page 9 of 12

Donde:

W = Peso del sandbag (Tonf/ml)

Cálculo de Presión Hidrostática, subpresión e hidrodinámica								
ID	h	Ph	Sb	Pe				
ID	(m)	(Tonf/ml)	(Tonf/ml)	(Tonf/ml)				
Sección 1	0.50	0.13	0.38	0.02				
Sección 2	2.00	2.00	1.50	0.28				

Donde:

Ph = Empuje hidrostático (Tonf/ml)

Sb = Subpresión (Tonf/ml)

Pe = Empuje hidrodinámico (westergaard) (Tonf/ml)

Cálculo de fuerzas sísmicas sandbag							
ID	Ch		Fsh				
ID	CII	ı	(tonf/ml)				
Sección 1	0.12	1.00	0.43				
Sección 2	0.12	1.00	0.65				

Donde:

Ch = Coeficiente sísmico horizontal

I = Factor de importancia

Fsh = Fuerza sísmica horizontal (Tonf/ml)

• Verificación a la flotación

Verificación flotación condición normal								
ID	W	h	Sb	FS				
ID .	ID (Tonf/ml) (m)	(Tonf/ml)	го					
Sección 1	3.60	0.50	0.38	9.60				
Sección 2	9.00	2.00	1.50	6.00				

Donde:

h = Nivel de agua (m)

FS = Factor de seguridad

Luego Fs > 1.20 ok.

Verificación al deslizamiento condición normal

REV. A00 Page 10 of 12

Verificación deslizamiento condición normal									
ID	W	Sb	Ph	N	Ntan(2/3Ø)	Fr	Fd	FS	
ID	(Tonf/ml)	(Tonf/ml)	(Tonf/ml)	(Tonf/ml)	(Tonf/ml)	(Tonf/ml)	(Tonf/ml)	13	
Sección 1	3.60	0.38	0.13	3.23	1.62	1.62	0.13	12.96	
Sección 2	9.00	1.50	2.00	7.50	3.77	3.77	2.00	1.88	

Luego FS > 1.50 Ok.

• Verificación al deslizamiento condición eventual

	Verificación deslizamiento condición eventual									
ID	W	Sb	Ph	N	Ntan(2/3Ø)	Pe	Fsh	Fr	Fd	FS
	(Tonf/ml)	(Tonf/ml)	(Tonf/ml)	(Tonf/ml)	(Tonf/ml)	(Tonf/ml)	(Tonf/ml)	(Tonf/ml)	(Tonf/ml)	
Sección 1	3.60	0.38	0.13	3.23	1.62	0.02	0.43	1.62	0.14	11.37
Sección 2	9.00	1.50	2.00	7.50	3.77	0.28	0.65	3.77	2.93	1.30

Luego FS = 1.30 Ok.

• Verificación al volcamiento condición normal

Verificación volcamiento condición normal								
ID	h_W	h_Sb	h_Ph	Mr_w	Mv_sb	Mv_Ph	FS	
ID	(m)	(m)	(m)	(Tonf/ml)	(Tonf/ml)	(Tonf/ml)	го	
Sección 1	0.75	1.00	0.17	2.70	0.38	0.02	6.82	
Sección 2	0.75	1.00	0.67	6.75	1.50	1.33	2.38	

Luego FS > 1.50 Ok.

• Verificación al volcamiento condición eventual

	Verificación volcamiento condición eventual									
ID	h_fsh	h_Fsv	h_Pe	Mv_fsh	Mv_fsv	Mv_Pe	Mr_w	Mv_sb	Mv_Ph	FS
טו	(m)	(m)	(m)	(Tonf/ml)	(Tonf/ml)	(Tonf/ml)	(Tonf/ml)	(Tonf/ml)	(Tonf/ml)	го
Sección 1	0.50	0.75	0.20	0.22	0.00	0.00	2.70	0.38	0.02	4.39
Sección 2	0.75	0.75	0.80	0.49	0.00	0.22	6.75	1.50	1.33	1.90

Luego FS > 1.30 Ok.

REV. A00 Page 11 of 12

6. CONCLUSIÓN

Se verifica la estabilidad de los sandbag para la contención del rio colorado, todos cumplen los factores de seguridad tanto el deslizamiento, flotación y volcamiento.

Finalmente, las dimensiones de los sandbag corresponden a la siguiente:

Sección superior BxLxh = 1.50x1.50x1.00 m. Sección inferior BxLxh = 1.50x1.50x1.50 m.

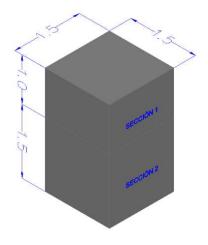


Figura 6-1 Dimensiones Sandbag.

REV. A00 Page 12 of 12

ALTO MAIPO SpA

ALTO MAIPO HYDROPOWER PROJECT

6395-HI-MCA-7001-A00

MEMORIA DE CÁLCULO HIDRÁULICO DESVÍO DE CAUCE RÍO COLORADO BOCATOMA MANZANO

REV	PREPARATION PÖYRY		REVIEW	REVIEW PÖYRY		PÖYRY APPROVAL		STRA REV		STRA APPRO	_
	NAME	SIGN.	NAME	SIGN.	NAME	SIGN.	DATE	NAME	SIGN.	NAME	SIGN.
A00	J. Alarcon	ALJ	G. Bravo	BRG	P. Furrer	FUP	05-05-2021				

El Grupo ÅF de Estocolmo, Suecia y los Grupos Pöyry de Helsinki, Finlandia, han concluido su fusión en una sola entidad en febrero de 2019. El nuevo Grupo AF-Pöyry fue rebautizado como Grupo AFRY. La nueva marca AFRY es una combinación de las letras de ÅF y Pöyry: AF+RY

Contenido

1.	REFERENCIAS	3
2.	INTRODUCCIÓN	4
2.1	Objetivo	4
3.	BASES DE CÁLCULO	5
3.1	Parámetros del Diseño	5
3.2	Porcentaje de Riesgo	6
4.	METODOLOGÍA	7
5.	RESULTADOS	10
5.1	Verificación Altura muro 2.5 metros	11
5.2	Verificación Riesgo	13
6.	CONCLUSIONES	15
Ane	χο Α	16

S POYRY PART OF AFRY

6395-HI-MCA-7001-A00 DESVÍO DE CAUCE - BOCATOMA MANZANO

1. REFERENCIAS

- [1] Poyry, Memoria De Calculo Hidráulico Bocatoma Manzano, 2021.
- [2] Poyry, Memoria De Calculo Estructural Bocatoma Manzano, 2021.
- [3] Plano 6395-HI-PLA-3009-A00 Bocatoma Manzano. Desvío de Cauce Río Colorado
- [4] 6395-ES-MCA-7003-A00: Memoria de Cálculo Estructural. Desvío de Cauce Río Colorado. Bocatoma Manzano

2. INTRODUCCIÓN

El Proyecto Hidroeléctrico Alto Maipo (PHAM) está localizado en la cuenca alta del río Maipo, al sureste de la ciudad de Santiago, en el municipio de San José de Maipo, Provincia Cordillera, Región Metropolitana de Chile.

El proyecto está constituido por dos centrales de pasada Alfalfal II y Las Lajas, diseñadas para 27 m³/s y 65 m³/s respectivamente, y considera aproximadamente 60 km de túneles excavados en roca.

El presente documento corresponde al diseño hidráulico de la contención del Río Colorado para la construcción de la bocatoma El Manzano, esta bocatoma actualmente destina caudal a los regantes del sector de la asociación El Manzano. Con el fin de mejorarla se realiza un nuevo diseño por parte de Poyry. Este nuevo diseño tiene como objetivo asegurar la captación de las aguas en periodos de caudales bajos, para lo cual fue necesario reubicarla y modificarla.

Para la contención del Río Colorado se han considerado la construcción de un cofferdam con sandbags.

2.1 Objetivo

El presente documento tiene por finalidad determinar el diseño hidráulico de la protección mediante Sandbag para la construcción de la bocatoma El Manzano.

3. BASES DE CÁLCULO

El diseño del cofferdam se realiza en base a lo indicado a continuación:

3.1 Parámetros del Diseño

Para el diseño hidráulico de la protección mediante sandbag de la bocatoma El Manzano se utiliza como base la "Memoria de Calculo Hidráulico BT Manzano", a partir de esta se obtienen los siguientes parámetros que servirán como base para la simulación.

- En primer lugar, se modificará el modelo hidráulico de Hec-Ras utilizado en el dimensionamiento de la Bocatoma, ya que incluye todos los parámetros necesarios.
 Este modelo se extrae a partir de la topografía disponible del terreno, la cual se exporta mediante secciones transversales desde el Software Autodesck Civil 3D al Software de modelamiento hidráulico Hec-Ras
- Se utiliza la misma rugosidad indicada en memoria de cálculo antes nombrada, en donde los valores son los siguientes,

Coeficiente de Manning	Ribera izquierda	Cauce Principal	Ribera Derecha
n	0,08	0,05	0,07

• Con excepción de la zona donde se ubicarán los sandabag, ya que en ese lugar la rugosidad será mucho menos, esta tiene el valor de 0.02, según referencias, las cuales se indican a continuación.

Canales en tierra: 0,020
Canales cortados en roca: 0,025
Canales de grava fina: 0,024
Canales de grava gruesa: 0,028

Fuente: Hidráulica de Canales Abiertos», de Richard French, USSCS.

Estos valores deberás ser ajustados por $n = n_0 + \Delta n$ según lo indicado por "French", en donde para este caso el valor de $\Delta n = 0$, ya que como se aprecia en la tabla a continuación estas modificaciones son nulas.

1. Modificación debido a la vegetación	Δn
Crecimiento de pastos flexibles y plantas acuáticas. Profundidad del flujo de 2 a 3 veces la altura de la vegetación.	0,005 a 0,010
Matorrales densos, como sauces, de 2 a 3 años en los taludes del canal. El radio hidráulico cercano a 0,60 [m].	0,010 a 0,025
Crecimiento de matorrales de sauces de 1 año y hierbas de gran follaje en los taludes con poca vegetación en el fondo. $R_h \approx 0,60$ [m].	0,025 a 0,050
Matorrales de sauces de 1 año y plantas de gran follaje en los taludes, y fondo del canal. $R_h > 3$ [m]	0,050 a 0,100
2. Por irregularidades de la sección de escurrimiento	1
Cambios en las dimensiones y formas de la sección graduales.	0
Secciones grandes y pequeñas alternadas o cambios en la forma produciendo ocasionalmente desviación del escurrimiento en el canal.	0,005
Secciones grandes y pequeñas alternadas frecuentemente y cambios de la forma, con frecuentes desplazamientos del flujo de lado a lado.	0,010 a 0,015
3. Por irregularidades de las superficies mojadas	
Superficies lisas.	0
Ligeramente erosionadas y taludes limpios.	0,005
Irregularidades severas. Márgenes empantanados y deformados con superficies irregulares.	0,020
4. Por obstrucciones en las secciones de escurrimiento	
Despreciable	0
Menor	0,010 a 0,015
Apreciable	0,020 a 0,030
Severa	0,040 a 0,060

Tabla 3.13. Modificaciones del coeficiente de rugosidad según el USSCS

- Para las condiciones de borde, se establece la condición de altura normal, calculado aproximadamente entre las secciones de los extremos la pendiente correspondiente. Para la zona de aguas arriba esta tiene un valor de 1.2 % y se calculó entre los perfiles RS 450 y 550, se realizó lo mismo para el tramo de aguas abajo donde la pendiente aproximada corresponde a un 0.8 % la cual se obtuvo entre los perfiles RS 0 y 100.
- En cuanto a la simulacion HEC RAS se modela un estado de flujo constante o Steady Flow para cada valor de cauda. Antes de compilar el análisis hidráulico se configura un régimen de flujo mixto,dado que se pueden presentar las condiciones de régimen sub-crítico y súper-crítico en los resultados.

3.2 Porcentaje de Riesgo

Para determinar el porcentaje de riesgo al cual estará sometido la obra se debe utilizar la siguiente expresión.

PART OF AFRY

6395-HI-MCA-7001-A00 DESVÍO DE CAUCE - BOCATOMA MANZANO

En donde:

R : Riesgo

T : Periodo de Retornon : Cantidad de Años.

4. METODOLOGÍA

Se debe establecer la delimitación de la zona por donde se ubicará el cofferdam, para luego realizar la modelación en el software Hec-Ras y determinar los niveles de agua correspondiente al punto de estudio.

En cuanto a la modelación se definieron levees que son diques longitudinales artificiales (que representarían en este caso a las sandbag) que se sitúan para indicarle al programa que existe una vía preferente de encauzamiento. Es de esta forma que se comienza a llenar inicialmente la sección del cauce principal que está restringida por el levee hasta alcanzar la altura indicada.

Una vez realizada la modelación y creación de los levees se da paso a la determinación de los caudales y alturas de agua requeridas para estimar y realizar el diseño preliminar de estos, el cual debe ser validad estructuralmente.

Se propone una estructura formada por sandbags la cual protegerá la construcción de la bocatoma El Manzano, esta tiene una altura de 2.5 metros sobre el fondo del cauce. Además, la estructura debe contar con una revancha de 0.5 metros por lo que la altura máxima de agua debe ser de 2 metros.

A continuación, se pueden apreciar las dimensiones reales de cada Sandbag, los cuales serán apilados de tal forma que cubrirán la zona de trabajos, para dejar libre y sin la entrada del agua.

Sección 1 BXLXH = 1.5x1.5x1.0 (m)

Sección 2 BXLXH = 1.5x1.5x1.5 (m)

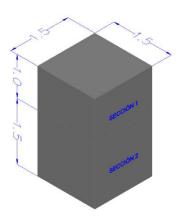


Figura 4-1 Esquema y Dimensiones Sandbag

En las siguientes figuras se observar la vista en planta del sistema de protección propuesto para los trabajos de construcción de la bocatoma El Manzano.

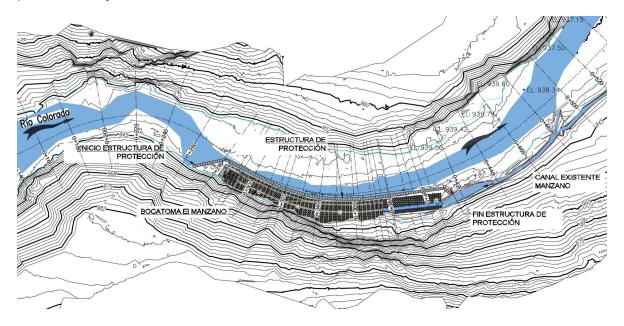


Figura 4-2 Vista en Planta Bocatoma el Manzano, Con Estructura de Protección

Figura 4-3 Vista en Planta Bocatoma el Manzano, Con Estructura de Protección sección inicial

5. RESULTADOS

Luego de y ajustar el modelo Hec-Ras según los parámetros antes mencionados se procede a extraer y procesar la información relevante que servirá como entrada para la verificación de la estructura propuesta. En la siguiente imagen se puede apreciar una planta de la secciones utilizadas para la modelación, además de una vista en 3D para apreciar como seria la geometría del cauce.

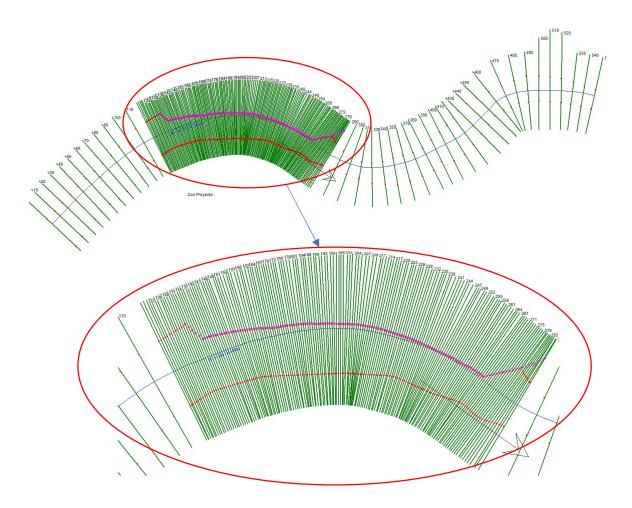


Figura 5-1 Vista en Planta Modelación Bocatoma el Manzano, zona de levees.

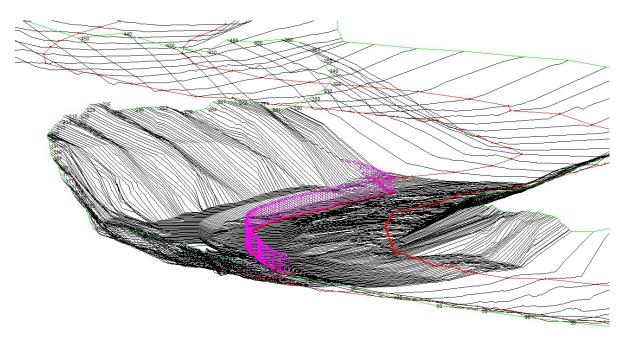


Figura 5-2 Vista 3D Modelación Bocatoma el Manzano

En la **Figura 5-2** se pueden apreciar los levees que representan los sandbag, estos están ubicados entre las River Station 290 y 133 según el modelo Hec-Ras, ya que es la zona que se debe proteger para la construcción de la bocatoma, estas secciones están aproximadamente a 0.9 metros desde el pie del enrocado que cubre la tubería proyectada para el canal El manzano.

Para poder estimar el caudal maximo que soportará la estructura de los sandbag se debe realizar una iteracion en el modelo Hec-Ras, esta iteracion nos arrojara las alturas de agua deseadas para que no se sobrepase la altura de la estructura proyectada.

5.1 Verificación Altura muro 2.5 metros

Como se indica en capitulos anteriorres la altura maxima del agua para el muro de 2.5 metros debe ser de 2 metros, ya que se considera una revancha de seguridad de 50 centimetros.

Mediante las iteraciones realizadas se puede concluir que el caudal correspondiente a una altura maxima del nivel de agua de 2 metros es 17,5 m³/s, el eje hidraulico correspondiente a la modelacion con este caudal puede ser apreciado en la siguiente figura, en donde se indica ademas el inicio y fin de de la estructura de proteción.

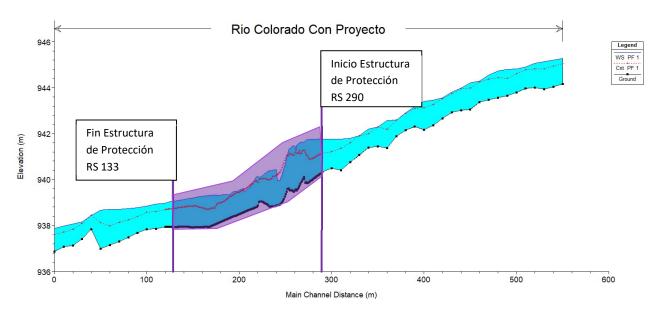


Figura 5.1-1 Eje Hidráulico Cauce con Estructura de Protección

Una vez que se obtiene el eje hidraulico se debe idenificar la seccion de mas desfavorable en donde la altura de agua sea aproximadamente 2 metros, esta seccion es la que controla el diseño. En este caso el perfil mas desvaborable corresponde la RS 259, el nivel de agua y fondo se muestra a continuacion, comparando la simulacion con protección y sin protección.

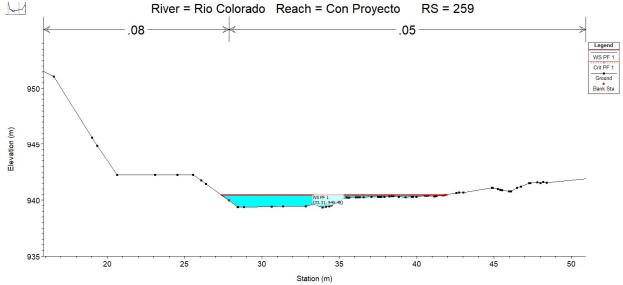


Figura 5.1-2 Sección Crítica Cauce Sin Estructura de Protección

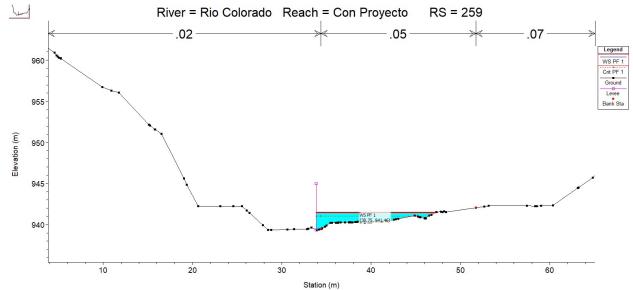


Figura 5.1-3 Sección Crítica Cauce Con Estructura de Protección

La altura de agua y el nivel del fondo del cauce del rio corresponden respectivamente para esta seccion a 941.46 y 939.47 m.s.n.m. lo que da una diferencia de altura de aguas de 2.0 metros.

5.2 Verificación Riesgo

En el caso analizado se considera una duración de las obras aproximada a 5 meses, lo que según iteraciones determina un periodo de retorno igual a 5 años. Esto para lograr un porcentaje de riesgo menor a 10% según lo recomendado para este tipo de obras.

La verificación exacta de riesgo para el periodo de retorno asociado corresponde a lo siguiente.

Periodo de Retorno, T	5	Años
Duración Trabajos	5	meses
Número de Años, n	0.42	Años
Porcentaje de Riesgo, R	8.88	%

Desde el punto de vista constructivo y de la magnitud de la obra a realizar se considera que este riesgo tiene asociado un caudal muy extremo, que según el documento "Memoria de Calculo Hidráulico BT Manzano" es de 104 m³/s.

Dicho lo anterior se realizó de igual forma la verificación para este caudal, en donde los resultados pueden ser apreciados en los anexos. Se destaca que la altura correspondiente al perfil más desfavorable alcanza aproximadamente los 3.5 metros con lo que al incluir una revancha se debería proyectar Sandbag de 4 metros de altura.

Teniendo en cuenta estos antecedentes, se realizara una comparación con la curva de variación estacional, ya que contiene los caudales para los distintos meses del año. Esta gráfica es de gran ayuda, ya que nos permite determinar el periodo en donde pueden realizarse los trabajos con un riesgo menor.

Para el caso de estudio el caudal maximo es de 17.5 m³/s que corresponde al que soportaria la estructura de protección proyectada, en la siguiente grafica se indica con color magenta este caudal.

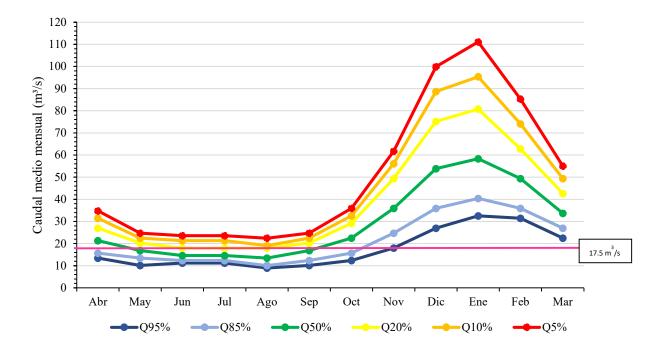


Figura 5.2-1 Curva de Variación Estacional en Bocatoma El Manzano 17.5 m³/s

De acuerdo a la grafica indicada anteriormente se puede inferir que debido a que la obra tendrá una duracion de 5 meses esta debiera ser construida entre los meses de mayo y septiembre, en donde para probabilidad de excedendia del 50% los valores de caudal estarian bajo el el limite de los 17.5 m³/s.

S POYRY PART OF AFRY

6395-HI-MCA-7001-A00 DESVÍO DE CAUCE - BOCATOMA MANZANO

6. CONCLUSIONES

Mediante la simulación hidráulica del Río Colorado en la zona donde se construirá la Bocatoma El Manzano se logró estimar el caudal máximo soportado por la estructura propuesta, esta estructura corresponde a unos Sandbag (sacos de arena) los cuales se apilan hasta una altura de 2.5 metros.

La altura de altura máxima de agua corresponde a 2 metros, ya que se debe dejar una revancha de 50 centímetros para este tipo de obras. El caudal que se estimó corresponde a 17,5 m3/s, para el cual según la curva de variacion se deben realizar las obras entre Mayo y Septiembre. Asumiendo el riesgo de inundación, en caso de que exista una crecida mayor, ya que es una obra provisoria de corto tiempo.

La posicion respecto a la estructura de la Bocatoma El Manzano de los Sandbag puede ser revisada en el plano indicado en referencias (6395-HI-PLA-3009-A00, Bocatoma Manzano. Desvío de Cauce Río Colorado)

Anexo A

(Resultados simulación del río Colorado HEC-RAS)

Eje Hidraulico Cauce con proteccion para caudal de 17.5 m³/s.

Perfil mas desfavorable = RS 259

River Sta	Q Total	Prof. Mín Cauce	Elev. Agua	Altura Crítica	Altura Agua
	(m3/s)	(m.s.n.m)	(m.s.n.m)	(m.s.n.m)	(m)
550	17.5	944.16	945.27	945.04	1.11
540	17.5	944.05	945.2	944.94	1.15
530	17.5	943.93	945.14	944.82	1.21
520	17.5	944.01	945.06	944.82	1.05
510	17.5	943.97	944.91	944.79	0.94
500	17.5	943.79	944.82	944.6	1.03
490	17.5	943.66	944.8	944.42	1.14
480	17.5	943.57	944.72	944.43	1.15
470	17.5	943.47	944.56	944.38	1.09
460	17.5	943.37	944.29	944.25	0.92
450	17.5	943.05	944.23	944	1.18
440	17.5	943.02	943.99	943.96	0.97
430	17.5	942.94	943.82	943.73	0.88
420	17.5	942.66	943.57	943.53	0.91
410	17.5	942.36	943.47	943.26	1.11
400	17.5	942.18	943.41	943.13	1.23
390	17.5	942.31	943.2	943.11	0.89
380	17.5	942.15	942.91	942.9	0.76
370	17.5	941.9	942.6	942.6	0.7
360	17.5	941.38	942.59	942.19	1.21
350	17.5	941.45	942.29	942.29	0.84
340	17.5	941.39	942.21	942	0.82
330	17.5	941.09	941.92	941.9	0.83
320	17.5	940.75	941.81	941.6	1.06
310	17.5	940.39	941.77	941.37	1.38
300	17.5	940.49	941.77	941.23	1.28
290	17.5	940.32	941.76	941.14	1.44
289	17.5	940.3	941.76	941.15	1.46
288	17.5	940.27	941.76	941.11	1.49
287	17.5	940.24	941.76	941.09	1.52
286	17.5	940.22	941.76	941.07	1.54
285	17.5	940.19	941.76	941.05	1.57
284	17.5	940.16	941.76	941.02	1.6
283	17.5	940.13	941.76	940.98	1.63
282	17.5	940.1	941.76	940.97	1.66
281	17.5	940.07	941.76	940.97	1.69
280	17.5	940.04	941.75	940.94	1.71
279	17.5	940.01	941.75	940.91	1.74
278	17.5	939.97	941.75	940.9	1.78
277	17.5	939.94	941.75	940.89	1.81
276	17.5	939.91	941.74	940.89	1.83
275	17.5	939.88	941.74	940.92	1.86

River Sta	Q Total (m3/s)	Prof. Mín Cauce (m.s.n.m)	Elev. Agua	Altura Crítica (m.s.n.m)	Altura Agua (m)
274			(m.s.n.m)	-	
274	17.5	939.86	941.73	940.99	1.87
273	17.5	939.85	941.72	941.05	1.87
272	17.5	939.88	941.71	941.1	1.83
271	17.5	939.87	941.68	941.19	1.81
270	17.5	940.11	941.64	941.28	1.53
269	17.5	940.04	941.63	941.27	1.59
268	17.5	939.97	941.62	941.24	1.65
267	17.5	939.89	941.63	941.15	1.74
266	17.5	939.82	941.62	941.12	1.8
265	17.5	939.75	941.57	941.26	1.82
264	17.5	939.67	941.57	941.12	1.9
263	17.5	939.6	941.53	941.19	1.93
262	17.5	939.53	941.5	941.13	1.97
261	17.5	939.57	941.32	941.3	1.75
260	17.5	939.53	941.45	941.16	1.92
259	17.5	939.47	941.46	941.06	1.99
258	17.5	939.49	941.46	941.06	1.97
257	17.5	939.54	941.43	941.07	1.89
256	17.5	939.53	941.41	941.09	1.88
255	17.5	939.53	941.37	941.1	1.84
254	17.5	939.55	941.35	941.13	1.8
253	17.5	939.61	941.28	941.04	1.67
252	17.5	939.6	941.06	941.01	1.46
251	17.5	939.47	941.04	941.04	1.57
250	17.5	939.37	940.76	940.92	1.39
249	17.5	939.26	940.62	940.83	1.36
248	17.5	939.16	940.48	940.71	1.32
247	17.5	939.08	940.35	940.63	1.27
246	17.5	939.01	940.22	940.52	1.21
245	17.5	938.96	940.1	940.4	1.14
244	17.5	938.93	939.98	940.33	1.05
243	17.5	938.91	939.96	940.31	1.05
242	17.5	938.9	939.96	940.25	1.06
241	17.5	938.89	939.97	940.22	1.08
240	17.5	938.87	940.42	940.18	1.55
239	17.5	938.86	940.42	940.16	1.56
238	17.5	938.85	940.42	940.14	1.57
237	17.5	938.84	940.41	940.14	1.57
236	17.5	938.84	940.41	940.12	1.57
235	17.5	938.84	940.39	940.06	1.55
234	17.5	938.83	940.39	940.03	1.56
233	17.5	938.83	940.39	940.03	1.55
232	17.5	938.85	940.38	939.98	1.53
231	17.5	938.9	940.37	939.98	1.47
230	17.5	938.92	940.34	940.01	1.42
229	17.5	938.94	940.3	940.02	1.36

River Sta	Q Total (m3/s)	Prof. Mín Cauce (m.s.n.m)	Elev. Agua (m.s.n.m)	Altura Crítica (m.s.n.m)	Altura Agua (m)
228		+			
	17.5	938.96	940.29	940.04 940.04	1.33
227	17.5	938.99	940.25		1.26
226	17.5	939.01	940.21	940.04	1.2
225	17.5	939.03	940.17	940.04	1.14
224	17.5	939.05	940.15	940.04	1.1
223	17.5	939.05	940.13	940.02	1.08
222	17.5	939.05	940.11	940.01	1.06
221	17.5	939.03	940.09	940	1.06
220	17.5	938.87	940.14	939.89	1.27
219	17.5	938.83	940.15	939.93	1.32
218	17.5	938.81	940.11	939.94	1.3
217	17.5	938.79	940.02	939.95	1.23
216	17.5	938.78	939.92	939.91	1.14
215	17.5	938.76	939.89	939.89	1.13
214	17.5	938.74	939.77	939.84	1.03
213	17.5	938.72	939.78	939.8	1.06
212	17.5	938.71	939.69	939.77	0.98
211	17.5	938.69	939.66	939.75	0.97
210	17.5	938.67	939.63	939.7	0.96
209	17.5	938.66	939.6	939.67	0.94
208	17.5	938.64	939.57	939.65	0.93
207	17.5	938.62	939.54	939.62	0.92
206	17.5	938.61	939.51	939.59	0.9
205	17.5	938.59	939.48	939.57	0.89
204	17.5	938.57	939.61	939.54	1.04
203	17.5	938.56	939.6	939.53	1.04
202	17.5	938.54	939.58	939.5	1.04
201	17.5	938.52	939.56	939.48	1.04
200	17.5	938.51	939.54	939.46	1.03
199	17.5	938.49	939.52	939.44	1.03
198	17.5	938.48	939.48	939.43	1
197	17.5	938.46	939.49	939.43	1.03
196	17.5	938.44	939.49	939.42	1.05
195	17.5	938.43	939.49	939.38	1.06
194	17.5	938.41	939.48	939.36	1.07
193	17.5	938.39	939.47	939.33	1.08
192	17.5	938.37	939.44	939.3	1.07
191	17.5	938.36	939.4	939.29	1.04
190	17.5	938.34	939.36	939.29	1.02
189	17.5	938.32	939.34	939.24	1.02
188	17.5	938.31	939.33	939.22	1.02
187	17.5	938.29	939.36	939.17	1.07
186	17.5	938.27	939.36	939.14	1.09
185	17.5	938.26	939.36	939.1	1.1
184	17.5	938.24	939.35	939.08	1.11
_0.	17.5	938.22	939.35	939.05	1.13

m) (m) 1.14 1.14 1.16 1.16 1.17 1.18 1.22 1.22 1.25 1.27 1.3 1.31 1.31 1.31 1.33 1.31 1.35 1.35
1.14 1.16 1.17 1.18 1.12 1.22 1.25 1.27 1.3 1.31 1.31 1.31 1.33 1.31 1.35 1.35
1.16 3 1.17 4 1.18 3 1.2 4 1.22 5 1.25 6 1.3 7 1.31 7 1.3 6 1.31 6 1.33 1.31 6 1.35 1.37 1.38 1.35 1.35 1.35
3 1.17 7 1.18 3 1.2 4 1.22 5 1.27 6 1.3 7 1.31 7 1.31 8 1.31 9 1.35 1 1.37 1 1.38 1 1.35 1 1.35 1 1.35 1 1.35 1 1.35
1.18 1.2 1.2 1.22 1.25 1.27 1.3 1.31 1.31 1.31 1.33 1.31 1.35 1.35
1.2 1.22 1.25 1.27 1.3 1.31 1.31 1.31 1.33 1.31 1.35 1.35
1.22 1.25 1.27 1.3 1.31 1.3 1.31 1.33 1.31 1.33 1.35 1.35 1.37 1.38 1.35 1.35
1.25 1.27 1.3 1.31 1.31 1.31 1.31 1.31 1.33 1.35 1.35 1.37 1.38 1.35 1.35
1.27 1.3 1.31 1.31 1.31 1.31 1.31 1.33 1.35 1.37 1.38 1.35 1.35 1.35
1.3 1.31 1.31 1.3 1.31 1.31 1.33 1.35 1.37 1.38 1.35 1.35 1.35
1.31 1.31 1.31 1.31 1.33 1.35 1.37 1.38 1.35 1.35 1.35
1.3 1.31 5 1.33 1 1.35 1 1.37 1 1.38 1 1.35 2 1.35
1.31 1.33 1.35 1.37 1.38 1.35 1.35
1.33 1.35 1.37 1.38 1.35 1.35
1.35 1.37 1.38 1.35 1.35
1.37 1.38 1.35 1.35
1.38 1.35 1.35
1.35 2 1.35
1.35
1.34
3 1.34
1.33
1.33
3 1.34
1.33
1.33
1.32
1.31
1.3
5 1.29
1.29
1.29
1.28
1.27
1.25
1.25
5 1.24
5 1.22
5 1.22
1.21
1.18
1.18
1.17
) 1.17

River Sta	Q Total	Prof. Mín Cauce	Elev. Agua	Altura Crítica	Altura Agua
	(m3/s)	(m.s.n.m)	(m.s.n.m)	(m.s.n.m)	(m)
136	17.5	937.95	939.11	938.79	1.16
135	17.5	937.95	939.1	938.78	1.15
134	17.5	937.95	939.1	938.78	1.15
133	17.5	937.95	939.09	938.77	1.14
132	17.5	937.95	939.08	938.76	1.13
131	17.5	937.95	939.07	938.75	1.12
130	17.5	937.94	939.07	938.74	1.13
129	17.5	937.94	939.06	938.74	1.12
128	17.5	937.94	939.05	938.73	1.11
127	17.5	937.94	939.05	938.72	1.11
126	17.5	937.94	939.03	938.72	1.09
125	17.5	937.94	939.03	938.71	1.09
124	17.5	937.94	939.01	938.71	1.07
123	17.5	937.94	939	938.7	1.06
122	17.5	937.94	939	938.7	1.06
121	17.5	937.94	938.98	938.69	1.04
120	17.5	937.93	938.97	938.69	1.04
110	17.5	937.85	938.92	938.59	1.07
100	17.5	937.83	938.83	938.57	1
90	17.5	937.67	938.76	938.39	1.09
80	17.5	937.49	938.74	938.24	1.25
70	17.5	937.31	938.71	938.13	1.4
60	17.5	937.15	938.69	937.97	1.54
50	17.5	936.99	938.66	938.11	1.67
40	17.5	937.83	938.43	938.43	0.6
30	17.5	937.42	938.15	938.07	0.73
20	17.5	937.13	938.06	937.83	0.93
10	17.5	937.08	937.98	937.71	0.9
0	17.5	936.86	937.88	937.6	1.02

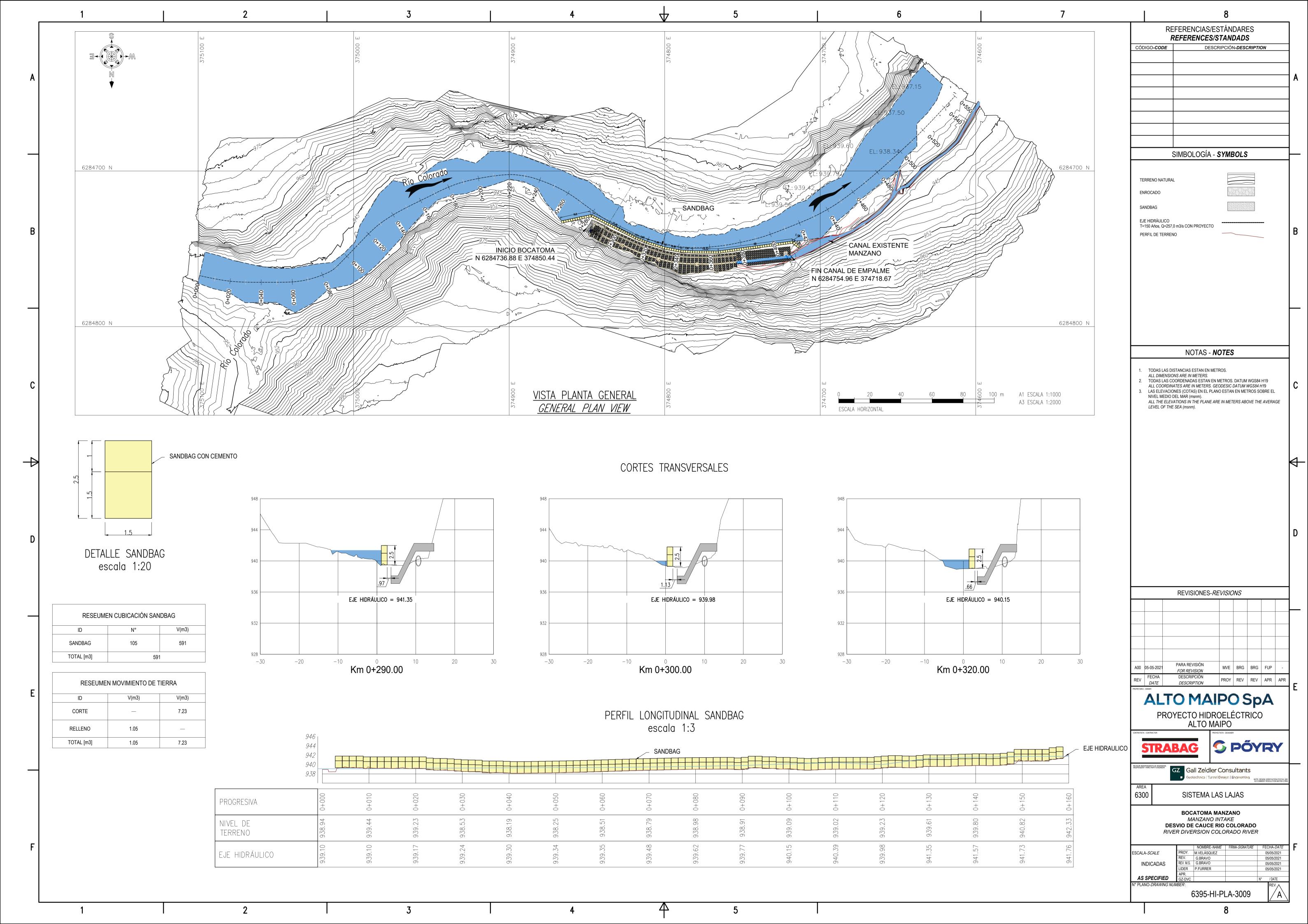
Eje Hidraulico Cauce con proteccion para caudal de 104 m³/s.

Perfil mas desfavorable = RS 243

River Station	Q Total	Prof. Mín Cauce	Elev. Agua	Altura Crítica	Altura Agua
	(m3/s)	(m.s.n.m)	(m.s.n.m)	(m.s.n.m)	(m)
550	104	944.16	946.42	946.07	2.26
540	104	944.05	946.36	945.94	2.31
530	104	943.93	946.31	945.87	2.38
520	104	944.01	946.26	945.76	2.25
510	104	943.97	946.15	945.71	2.18
500	104	943.79	946.12	945.54	2.33
490	104	943.66	946.15	945.26	2.49
480	104	943.57	946.02	945.35	2.45
470	104	943.47	945.58	945.46	2.11
460	104	943.37	945.33	945.33	1.96
450	104	943.05	944.93	945.03	1.88
440	104	943.02	944.85	944.85	1.83
430	104	942.94	944.73	944.55	1.79
420	104	942.66	944.72	944.31	2.06
410	104	942.36	944.71	944.04	2.35
400	104	942.18	944.68	943.9	2.5
390	104	942.31	944.24	944.15	1.93
380	104	942.15	943.88	943.88	1.73
370	104	941.9	943.79	943.49	1.89
360	104	941.38	943.82	943.12	2.44
350	104	941.45	943.65	943.27	2.2
340	104	941.39	943.62	942.96	2.23
330	104	941.09	943.46	942.95	2.37
320	104	940.75	943.31	942.78	2.56
310	104	940.39	943.31	942.58	2.92
300	104	940.49	943.38	942.22	2.89
290	104	940.32	943.4	942.04	3.08
289	104	940.3	943.4	942.03	3.1
288	104	940.27	943.41	941.99	3.14
287	104	940.24	943.41	941.96	3.17
286	104	940.22	943.41	941.94	3.19
285	104	940.19	943.41	941.93	3.22
284	104	940.16	943.41	941.9	3.25
283	104	940.13	943.41	941.86	3.28
282	104	940.1	943.41	941.85	3.31
281	104	940.07	943.41	941.86	3.34
280	104	940.04	943.4	941.86	3.36
279	104	940.01	943.4	941.85	3.39
278	104	939.97	943.39	941.87	3.42
277	104	939.94	943.37	941.91	3.43
276	104	939.91	943.36	941.94	3.45
275	104	939.88	943.33	942	3.45

River Station	Q Total (m3/s)	Prof. Mín Cauce (m.s.n.m)	Elev. Agua (m.s.n.m)	Altura Crítica (m.s.n.m)	Altura Agua (m)
274	104	939.86	943.3	942.08	3.44
273	104	939.85	943.26	942.15	3.41
272	104	939.88	943.22	942.25	3.34
271	104	939.87	943.15	942.4	3.28
270	104	940.11	943.02	942.57	2.91
269	104	940.04	943	942.56	2.96
268	104	939.97	942.98	942.57	3.01
267	104	939.89	942.99	942.5	3.1
266	104	939.89	942.98	942.5	3.16
265	104	939.75	942.83	942.59	3.08
264	104	939.67	942.84	942.53	3.17
263	104	939.6	942.77	942.6	3.17
262	104	939.53	942.78	942.6	3.25
261	104		942.79	942.6	3.22
260	104	939.57 939.53	942.79	942.45	3.32
259 258	104 104	939.47	942.86	942.36	3.39
257	104	939.49	942.86 942.82	942.3	3.37
		939.54		942.4	3.28
256	104	939.53	942.8	942.43	3.27
255	104	939.53	942.79	942.45	3.26
254	104	939.55	942.78	942.44	3.23
253	104	939.61	942.74	942.46	3.13
252	104	939.6	942.68	942.47	3.08
251	104	939.47	942.48	942.48	3.01
250	104	939.37	942.44	942.45	3.07
249	104	939.26	942.29	942.41	3.03
248	104	939.16	942.27	942.37	3.11
247	104	939.08	942.24	942.35	3.16
246	104	939.01	942.35	942.31	3.34
245	104	938.96	942.38	942.25	3.42
244	104	938.93	942.38	942.2	3.45
243	104	938.91	942.39	942.17	3.48
242	104	938.9	942.37	942.17	3.47
241	104	938.89	942.3	942.19	3.41
240	104	938.87	942.28	942.18	3.41
239	104	938.86	942.28	942.11	3.42
238	104	938.85	942.28	942.06	3.43
237	104	938.84	942.29	942.03	3.45
236	104	938.84	942.26	942.02	3.42
235	104	938.84	942.23	942.04	3.39
234	104	938.83	942.24	942.03	3.41
233	104	938.83	942.22	941.97	3.39
232	104	938.85	942.2	941.97	3.35
231	104	938.9	942.18	941.92	3.28
230	104	938.92	942.14	941.91	3.22
229	104	938.94	942.12	941.89	3.18

River Station	Q Total (m3/s)	Prof. Mín Cauce (m.s.n.m)	Elev. Agua (m.s.n.m)	Altura Crítica (m.s.n.m)	Altura Agua (m)
228	104	938.96	942.09	941.83	3.13
227	104	938.99	942.06	941.92	3.07
226	104	939.01	942.04	941.87	3.03
225	104	939.03	942.03	941.85	3.03
224	104	939.05	942	941.85	2.95
223	104	939.05	941.98	941.84	2.93
222	104	939.05	941.85	941.81	2.8
221	104	939.03	941.77	941.7	2.74
220	104	938.87	941.85	941.54	2.98
219	104	938.83	941.88	941.51	3.05
218	104	938.83	941.75	941.54	2.94
217	104	938.79	941.6	941.54	2.81
216	104	938.78	941.59	941.49	2.81
215	104	938.76	941.58	941.46	2.82
214	104	938.74	941.57	941.42	2.83
213	104	938.74	941.57	941.42	2.83
212	104	938.72	941.59	941.35	2.87
212	104	938.69	941.57	941.33	2.88
	104				
210		938.67	941.53	941.32	2.86
209	104	938.66	941.54	941.29	2.88
208	104	938.64	941.54	941.25	2.9
207	104	938.62	941.54	941.2	2.92
206	104	938.61	941.45	941.17	2.84
205	104	938.59	941.47	941.17	2.88
204	104	938.57	941.45	941.16	2.88
203	104	938.56	941.41	941.17	2.85
202	104	938.54	941.4	941.14	2.86
201	104	938.52	941.39	941.11	2.87
200	104	938.51	941.1	941.1	2.59
199	104	938.49	941.08	941.08	2.59
198	104	938.48	940.97	941.03	2.49
197	104	938.46	940.66	940.94	2.2
196	104	938.44	940.58	940.89	2.14
195	104	938.43	940.64	940.85	2.21
194	104	938.41	941.05	940.8	2.64
193	104	938.39	941.04	940.79	2.65
192	104	938.37	941.01	940.79	2.64
191	104	938.36	940.99	940.78	2.63
190	104	938.34	940.98	940.76	2.64
189	104	938.32	940.97	940.75	2.65
188	104	938.31	940.98	940.71	2.67
187	104	938.29	941.01	940.64	2.72
186	104	938.27	941.02	940.6	2.75
185	104	938.26	941	940.6	2.74
184	104	938.24	940.95	940.61	2.71
183	104	938.22	940.88	940.6	2.66



River Station	Q Total (m3/s)	Prof. Mín Cauce (m.s.n.m)	Elev. Agua (m.s.n.m)	Altura Crítica (m.s.n.m)	Altura Agua (m)
182	104	938.2	940.83	940.58	2.63
181	104	938.19	940.6	940.55	2.41
180	104	938.17	940.59	940.54	2.42
179	104	938.15	940.6	940.52	2.45
178	104	938.14	940.63	940.48	2.49
177	104	938.12	940.67	940.42	2.55
176	104	938.1	940.71	940.37	2.61
175	104	938.08	940.74	940.27	2.66
174	104	938.07	940.77	940.17	2.7
173	104	938.04	940.78	940.1	2.74
172	104	938.03	940.76	940.1	2.73
171	104	938.02	940.69	940.17	2.67
170	104	938	940.55	940.21	2.55
169	104	937.98	940.56	940.18	2.58
168	104	937.96	940.58	940.14	2.62
167	104	937.94	940.59	940.12	2.65
166	104	937.93	940.59	940.06	2.66
165	104	937.95	940.58	940.11	2.63
164	104	937.95	940.57	940.1	2.62
163	104	937.95	940.56	940.1	2.61
162	104	937.95	940.54	940.1	2.59
161	104	937.95	940.5	940.1	2.55
160	104	937.95	940.47	940.11	2.52
159	104	937.94	940.46	940.09	2.52
158	104	937.94	940.46	940.08	2.52
157	104	937.94	940.45	940.08	2.52
156	104	937.94	940.39	940.09	2.45
155	104	937.94	940.37	940.08	2.43
154	104	937.94	940.35	940.1	2.41
153	104	937.94	940.35	940.1	2.41
152	104	937.93	940.35	940.09	2.41
151	104	937.93	940.35	940.06	2.42
150	104	937.93	940.34	940.06	2.42
149	104	937.93	940.33	940.03	2.4
148	104	937.94	940.32	940.05	2.38
147	104	937.94	940.3	940.03	2.36
146	104	937.94	940.27	940.03	2.33
145	104	937.95	940.25	940.02	2.3
144	104	937.95	940.27	939.96	2.32
143	104	937.96	940.28	939.93	2.32
142	104	937.96	940.28	939.92	2.32
141	104	937.96	940.26	939.94	2.3
140	104	937.96	940.25	939.94	2.29
139	104	937.96	940.24	939.93	2.28
138	104	937.95	940.23	939.91	2.28
137	104	937.95	940.25	939.91	2.3

River Station	Q Total	Prof. Mín Cauce	Elev. Agua	Altura Crítica	Altura Agua
	(m3/s)	(m.s.n.m)	(m.s.n.m)	(m.s.n.m)	(m)
136	104	937.95	940.29	939.86	2.34
135	104	937.95	940.31	939.83	2.36
134	104	937.95	940.32	939.84	2.37
133	104	937.95	940.31	939.84	2.36
132	104	937.95	940.3	939.81	2.35
131	104	937.95	940.29	939.8	2.34
130	104	937.94	940.29	939.8	2.35
129	104	937.94	940.28	939.77	2.34
128	104	937.94	940.28	939.74	2.34
127	104	937.94	940.28	939.73	2.34
126	104	937.94	940.27	939.73	2.33
125	104	937.94	940.26	939.74	2.32
124	104	937.94	940.25	939.74	2.31
123	104	937.94	940.24	939.74	2.3
122	104	937.94	940.24	939.71	2.3
121	104	937.94	940.23	939.72	2.29
120	104	937.93	940.22	939.72	2.29
110	104	937.85	940.18	939.55	2.33
100	104	937.83	940.07	939.53	2.24
90	104	937.67	939.81	939.51	2.14
80	104	937.49	939.78	939.26	2.29
70	104	937.31	939.76	939.18	2.45
60	104	937.15	939.76	938.96	2.61
50	104	936.99	939.66	939.06	2.67
40	104	937.83	939.39	939.2	1.56
30	104	937.42	939.37	938.95	1.95
20	104	937.13	939.31	938.82	2.18
10	104	937.08	939.26	938.75	2.18
0	104	936.86	939.15	938.71	2.29

